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Three-species monomer-monomer model: A mean-field analysis and Monte Carlo study
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We study the phase diagram and critical behavior of a one-dimensional three-species monomer-monomer
catalytic surface reaction model. Static Monte Carlo simulations are used to roughly map out the phase diagram
consisting of a reactive steady state bordered by three equivalent unreactive phases where the surface is
saturated with one monomer species. The transitions from the reactive phase are all continuous, while the
transitions between poisoned phases are first order. Of particular interest are the bicritical points where the
reactive phase simultaneously meets two poisoned phases. A mean-field cluster analysis fails to predict all of
the qualitative features of the phase diagram unless correlations up to triplets of adjacent sites are included.
Scaling properties of the continuous transitions and the bicritical points are studied using dynamic Monte Carlo
simulations. The transition from the reactive to a saturated phase shows directed percolation critical behavior,
while the universal behavior at the bicritical point is in the even branching annihilating random walk class. The
crossover from bicritical to critical behavior is also studig81063-651X97)07405-9

PACS numbg(s): 05.70.Ln, 82.20.Mj, 82.65.Jv, 64.60.Ht

. INTRODUCTION phase fory;<yco<Y,. At y; the fraction of each species
changes continuously, indicating that the dimer poisoning
Nonequilibrium models with many degrees of freedomtransition is continuous. Ay, the monomer poisoning tran-
whose dynamics violate detailed balance arise in studies dfition is first order, with the densities of the different species
biological populations, chemical reactions such as heterogehanging discontinuously. In one dimension, the ZGB
neous catalysis, fluid turbulence, and elsewhere. The macreanonomer-dimer reaction model has no reactive phase, only
scopic behavior of these models can be much richer than thatonomer-poisoned and dimer-poisoned phases separated by
of systems in thermal equilibrium, showing organized mac-a first-order transitiof4].
roscopic spatial and temporal structures like pulses or waves, An even simpler catalytic reaction model can be con-
and even spatiotemporal chaos. Even the steady state behatructed by replacing the dimer species in the ZGB model
ior can be far more complicated, involving, for example,with a second monomer species. This monomer-monomer
scale invariance at generic parameter values, and critical berodel has a long history5], and in fact certain analytic
havior distinct from any equilibrium models. However, like results for this model have been obtained in the reaction-
their equilibrium cousins, systems at continuous transitiongontrolled limit of the mode]6]. In this model two different
between nonequilibrium steady states show universal behavaonomer species, call thed and B, adsorb on a lattice
ior that is insensitive to microscopic details and depends onlyhere nearest-neighb#B pairs react and aAB molecule
on properties such as symmetries and conservation laws. desorbs. However, the phase diagram for this model does not
One place where such nonequilibrium models appear is igontain a reactive steady state in any number of dimensions,
the study of chemical reactions occurring on catalytic sureither in the adsorption-controlled or in the reaction-
faces, which show a variety of interesting behavior includingcontrolled limit. The phase diagram consists onlyAefand
nonequilibrium phase transitions, temporal oscillations, spiB-poisoned states, and a first-order transition between them.
ral waves, and chemical cha]. In order to help under- The dimer poisoning transition in the ZGB model is one
stand these complicated processes, a number of simple mogf the most common types of continuous phase transitions in
els have recently been proposed that attempt to capture thenequilibrium models. It is a transition to a single absorb-
essential physicE2]. ing, noiseless, steady state, the term absorbing indicating the
Ziff, Gulari, and BarshadZGB) proposed a monomer- state cannot be left once it is reached. Other examples in-
dimer reaction model to explain some features of CO oxidaclude directed percolatiofDP) [7,8], the contact proce$$],
tion on a noble-metal surfad8]. In their model, monomers autocatalytic reaction modef40], and branching annihilat-
representing CO molecules and dimers representingn@l- ing random walks with odd numbers of offsprifgl,12.
ecules adsorb on a lattice. Immediately upon adsorption, thBoth renormalization group calculationg,13] and Monte
O, dimers dissociate into two O monomers. CO monomersCarlo simulation§8—12,14 show that these models form a
and O monomers occupying nearest-neighbor sites then reasihgle universality class for a purely nonequilibrium model
to form a CO, molecule that immediately desorbs, leaving with no internal symmetry in the order parameter.
two vacant lattice sites. In the limit of infinitely fast reactions  Recently, a number of models with continuous adsorbing
(the adsorption-controlled limit where the only parameter transitions in a universality class distinct from directed per-
of the model is the relative adsorption rate of CO moleculesolation have been studied. These models include probabilis-
Yco. they found in two dimensions that there are threetic cellular automata models studied by Grassbewgesl.
phases: An @, or dimer-poisoned state for.o<y;, @a CO, [15], certain kinetic Ising modeld16], the interacting
or monomer-poisoned phase fggo>Yy,, and a reactive monomer-dimer modef17,18, and branching annihilating
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random walks with an even number of offspritBAWE) 10 ¢

[11,19. All of these models except for the BAWE have two i

equivalent absorbing states indicating the importance of 08 k

symmetry of the adsorbing state to the universality class. L

However, the universal behavior of this new class is appar- 06 C

ently controlled by a dynamical conservation law. If the im- Pe L 4 )

portant dynamical variables in this class are defects repre- 04 L ™ g

sented by the walkers in the BAWE model and the walls L

between different saturated domains in the other models, the 02 | B A

models have a “defect parity” conservation Id45] where L :

the number of defects is conserved modulo 2. Recent field 0.0 —_—

theoretic work confirms this viewpoiti0]. 00 02 04 06 08 10
In a recent Letter[21], we introduced a monomer- Pae

monomer reaction model with three different monomer spe-

cies. This model could represent either a system with three FIG. 1. Phase diagram showing three saturated phasiisated
different chemical species or an autocatalytic reaction systefy the letters and a reactive phasghe unlabeled center regipn

in which one chemical species can adsorb on three differenc_to“d lines |nd|_c§1te con_tln_u_ous trf’ms[tlons. _Dashed lines indicate
types of surface sites. Using static and dynamic Monte Car|3rst-or.(1.er trf'ansmons. Blgrltlcal pomté‘ﬂled circles occur where
simulations, we determined the phase diagram and studigy© critical lines meet a first-order line.

the phase transitions in the one-dimensional version of the

model, and showed that it has continuous adsorbing transithe points where the reactive phase and two saturated phases
tions to both one and two equivalent noiseless states. It ig1eet arebicritical points[22] where two lines of continuous
therefore a good model to study the role of symmetry intransitions meet a line of first-order transitions.

adsorbing phase transitions.

In this paper we expand those results, providing more
details of our simulation methods and of the results, again
restricting our consideration to the one-dimensional version To analyze the kinetics of the three-species monomer-
of the model. We also include a mean-field cluster analysisnonomer model, it is useful to perform a mean-field analy-
of the model including up to triplets of adjacent sites. Thesis. While such analysis neglects long-range correlations and
paper is organized as follows. In the next section we definghus cannot be expected to properly predict critical proper-
the model and show the phase diagram of the model, ages, it should properly predict the qualitative structure of the
determined by simulations. The following section presentphase diagram, including the existence of continuous transi-
the mean-field analysis. Section IV contains the details andons and multicritical points. The mean-field analysis also
results of a detailed Monte Carlo study of the dynamic scalprovides a starting point for studying the importance of such
ing behavior at the various phase transitions, and of théluctuations, which, of course, become particularly important
crossover behavior between the different types of scaling benear continuous phase transitions. The mean-field approach
havior. In the last section we summarize our results. we us€ 23] studies the time evolution of clusters of sites, the

approximation coming in truncating the probabilities of ob-
serving clusters of larger size into probabilities for smaller
Il. THE MODEL size clusters. The simplest form is the site approximation

Our three-species monomer-monomer model is defined b\{yh_ere_ probabilities of observing certain neare_st-neigh_b_or
two fundamental dynamic processég) monomer adsorp- Pairs is replac_ed b_y the produce of _the average s_lte densities.
tion at sites of a substrate, affg) the annihilation reaction of ~Better approximations can be obtained systematically by re-
two dissimilar monomers adsorbed on nearest-neighbor sitddacing the actual configuration of larger clusters, i.e., pairs,
of the substrate. Here we consider the model only in théhen triplets, and so on, with the average density of those
adsorption-controlled limit where proceél® occurs instan-  clusters. The analysis presented below of the one-
taneously. Calling the monomer specias B, and C, the d_|m_en5|ona(1D) version of the mode_l includes clusters con-
parameters in the model are then the relative adsorption rat§#sting of up to triplets of adjacent sites.
of the different monomer speci@s , pg, andpc, such that
pa+ps+pc=1. Using static Monte Carlo simulations to get A. Site approximation
the rough picture, and refining it with dynamical Monte ) ) ) ) _ )

Carlo studies described below, we find the ternary phase dia- At @ particular time, a lattice witN sites will haveNy
gram for the model as shown in Fig. 1. In this figure, theVacancies, the remaining sites being filled with, Ng, and
horizontal axis corresponds to the relative adsorption rate dilc numbers ofA, B, and C monomers, respectively. The

A and B monomerspag=pa/(pa+ps). The absorbing dens!ty of A monomers |9<AE(NA/N)_, with corresponding
phases, where one monomer species saturates the chain, §€finitions forB, C, and vacantY) sites. We have the ob-
cupy the corners of the phase diagram. In the center of th¥/OUS constraint
phase diagransia a reactive steady state. There are continu-

ous phase transitions from the reactive phase to the saturated

phases, but the monomer densities undergo discontinuous,

first-order, transitions from one saturated state to anothein the site approximation all correlations are neglected, so

[ll. MEAN-FIELD THEORY

Xy+Xa+tXg+Xc=1. @
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the monomeli occupies the site to the left of monomgr
and we haveN;;=N;j . Since we are studying one dimen-
sion, the number of bonds equals the number of $iteso
the bond densities are defined by

_Nij+Nji o
Xij:T' |7£J
and

_N;
Xii=W.

There are seven different allowed types of bonds:-V,

FIG. 2. Phase diagram in the site approximation. TransitionsA_A B—B,C—C, A—V, B—V, andC—V. Other types

between the reactive phagenlabeled and the three saturated
phasegindicated by the lettejsare continuous. Note that unlike the

actual phase diagram shown in Fig. 1 the continuous transition Iineg
are straight and the bicritical points where two continuous transition

lines meet are on the edge of the phase diagram.

thatx\z, is the probability that a given pair of lattice sites are
occupied by two vacancies. The rate equations for Ahe

of bonds,A—B, A—C, and B—C, are forbidden in the
adsorption-controlled limit we are considering. The densities
atisfy the constraint

(€)

va+ XAA+ XBB+ ch+ XAV+ XBV+ XCV: 1,

so only six of thex;; are independent. Th& monomer den-
sity is given byx,=Xaa+ 3Xay, With similar expressions

monomer density is for the B andC densities.

To determine the equations of motion of the pair densities
it is useful to distinguish between the different types of
events that change the configuration. For example, iAan
monomer attempts to occupy a site, it ddnstick, (2) react
with a B, or (3) react with aC, which we indicate, respec-
tively, with the shorthand(l) A], (2) A|lABT, and (3)
A]ACT. The rate equations can be written as

dXa

T PaXy(1—Xg—Xc)? = (Pg+Pc)Xv[1—(1—Xa)?],

)

with similar equations foxg andxc. The first term on the
right hand side of Eq(2) is the rate ofA monomer adsorp-
tion multiplied by the probability that an adsorbidgmono-
mer will find a vacant site that has r® or C monomers
adsorbed on adjacent sites. The second term is the rate at
which B or C monomers find a vacant site with at least one
adjacent adsorbefl monomer to react with. ) .
Equations(2) have steady state solutions corresponding tdVherea refers to the event type, ank(?” is the change in
each of the three adsorbing states where the surface is pdi- bond density arising from an event of type
soned by one SpeCieS, as well as one Corresponding to the To find the different bond denSity Changes note that the
reactive steady state. To find the site approximation phas@robabilityP(i|j) for a site to be occupied by a mononter
diagram, we analyzed the stability of those solutions as aacancy of typei, given that one of its nearest-neighbors is
function of the rategp,} by examining the eigenvalues of of typej, is
the Jacobian matrix for linearized rate equations.

dx;
k] ()
dt ‘% A

For example, the Jacobian matrix for tAepoisoned state P(ilj)= Nij _Xij
has two zero eigenvalues and one eigenvalue of N 2%
Pt Pc—Pa=(1—2p,). This third eigenvalue shows that
the A-poisoned state is stable only fpg>1/2. Correspond- for i#j, and
ing results hold for the other poisoned states, leading to the
site approximation phase diagram shown in Fig. 2. ey X

As the phase boundaries are approached from the reactive P(ili)= X_I

phase, the monomer densities vanish continuously, indicat-
ing a continuous transition to an absorbing state. The points The variousAxi(j“) are given in Table I, where
on the edge of the phase diagram where two different poi-
soned phases meet the reactive phase are bicritical points. xuvt Xy
. 1
zy=P(i|V)+P(V|V)= —
B. Pair approximation v

We improve the site approximation by properly account-is the probability that the site to the left of a vacant site is
ing for the correlation of nearest-neighbor pairs and approxioccupied by either an type monomer or &. The density
mating the correlations of triples and larger clusters. We deehanges due to the other event types are found by permuta-
fine N;; as the number of bonds connecting nearest-neighbdron.
sites occupied by andj monomers A, B, C, or V), where Thus the rate equations are
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TABLE I. Bond density changes for different events in the pair 0.05

approximation. 1.0 ' [ \/ ]
I -t B Y A
Event type Al A|ABT 08 | 0.00 L P
L c T0.497 0.503
XBV R =
Axyy —2PpaZavXvy 3 PXeV(1+Za)| 1+ 5~ 06
2X Pc H
AXan PAZavXav 0 04 r
XBB
AXgg 0 - %pAXBv(l‘*‘ZAv)X_B 02 | B A
AXce 0 0
AX Zav(2Xyy—X 0 00 bt
N AV Paza OVV a) Yoy 00 02 04 06 08 10
1
Xav —3 pAXBV(1+ZAV)X_B Pas
AXcy 0 0
FIG. 4. Phase diagram in the triple approximation. Transitions
between the reactive phase and the three saturated phases are con-
dXan Xan tinuous, while transitions between saturated phases are first order.

Xav
at PaXavZay— T[pB(1+ Zgy) + Pc(l+zcy) ], Inset shows a closeup of the phase diagram near the bicritical point
A at the end of the first-order line separating theand B saturated
phases. All of the qualitative features of the actual phase diagram
dXay 2 | are reproduced in this approximation.
—— =PaZ Xyy— X
dt PaZavi £Xyy— Xav

) C. Triplet approximation

_ @[p8(1+ Zgy) + Pe(l+2zey)]. (4 The mean-field theory can be refined even further by con-
2X sidering larger clusters. However, this systematic process
The other equations can be found by permutation, excepiapidly increases in difficulty. But since even the pair ap-
for xyy which can be found using E@3). proximation failed to predict that the bicritical points occur
Multiple steady state solutions to the set of six coupledon the interior of the phase diagram, we pushed the cluster
bond density rate Eq€4) correspond to the reactive state expansion one step further and analyzed the model in the
(which can be found numericallyas well the three poisoned triplet approximation. In this approximation clusters of three
states. In principle, to find the phase diagram a stabilityadjacent sites are considered, thereby including the effects of
analysis of those steady state solutions could be performedorrelations up to that level. The details of the calculation are
However, we instead simply solved the six equations nupresented in the Appendix, but here we summarize the re-
merically as a function of the parametasgz andpc, and  sults. In one dimension, there are 19 different allowed trip-
looked for the transitions to the poisoned states. The resuliets. However, four different constraints reduce the number
are shown in Fig. 3. The densities of the different monomeof independent triplets to 15. Numerically solving the rate
species still change continuously as the phase boundaries aggquations for the densities of those 15 different triplets si-
approached, indicating that the transitions are continuousnultaneously, we find solutions corresponding to the reac-
While the phase boundaries are now curved as they are in titve steady state, as well as the poisoned states. The phase
actual phase diagram, the bicritical points are still on thediagram, calculated as for pair approximation, is shown in
edge of the phase diagram, unlike the actual phase diagrarhig. 4. Finally at this level of approximation all of the quali-
tative features of the actual phase diagram are predicted. In
particular, the bicritical points appear on the interior of the

10 ' phase diagram and there are first-order lines between the
0s | poisoned phases. However, note that the size of the poisoned
“ phases is still underestimated by the mean-field cluster
06 | C analysis, even in the triplet approximation. For example, the
Po I bicritical point on the p,g=0.5 line occurs at about

04 | pc=0.02 in the triplet approximation, whereas in actuality it

I occurs at aboupc=0.12. This indicates that fluctuations,
02 - B A which are still not fully accounted for in mean-field theory,

I stabilize the poisoned phases.
0.0 e e

0.0 0.2 0.4 0.6 0.8 1.0 IV. SIMULATIONS

pAB
To further investigate the three-species monomer-

FIG. 3. Phase diagram in the pair approximation. TransitonsMonomer model we also used time-dependent Monte Carlo
between the reactive phagenlabeled and the three saturated Simulations. Particularly useful for studying critical proper-
phasedindicated by the lettejsare continuous. Note that unlike the ties, the method is a form of “epidemic” analydi$2,19,24
actual phase diagram shown in Fig. 1 the bicritical points are stilin which the average time evolution of a particular configu-
on the edge of the phase diagram. ration that is very close to an adsorbing statefect dynam-
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FIG. 5. Log-log plot showing the average number of vacancies, [ ]

ny as a function of timémeasured in MCpgnear the transition from 122 —/—————t——

the reactive phase to tli@ saturated phase phg=0.5. From top to 0.0 25 >0

bottom, the three curves correspondpg=0.395, 0.395 75, and 1000/t

0.3965. The middle curve corresponds to the critical point. Note

that the critical line is straight while the other lines have curvature

FIG. 6. Effective exponents using E¢) with b=5 for the
defect dynamics near the critical point pig=0.5 on the line
where theC-poisoned phase meets the reactive phase. Thettime
ics), or very close to a minimal width interface between two measured in Monte Carlo steps. From top to bottom, the three

different adsorbing state@nterface dynamids is measured curves in each panel correspond pe=0.3955, 0.395 75, and

by simulating a large number of independent realizations0.3960, with the middle curve corresponding to the critical point.

Using this technique we determined the universality classes

of the critical and bicritical points, and studied the critical Precise estimates of the location of the critical point and

dynamics of interfaces between the two symmetric saturategf the exponents can be made by examining the local slopes

states at the bicritical points, and the crossover from bicritiof the curves on a log-log plot. The effective exponent

cal to critical behavior, including measuring the crossovers(t) is defined as

exponento, as well as the subcritical behavior at the first-

order lines. , — 8(t)={In[P(t)/P(t/b)]/Inb}, )
Because monomers can adsorb only at vacant sites, and

the total number of vacancies on the lattice is usually very

small, instead of randomly picking a site to attempt to adsor

on, it is much more efficient to use a variable time algorithm . i : !

in which the adsorption site is randomly picked from a list of late to the crltlcql exp_onE:Pt, with a correcthq that IS ex-

vacant sites. The species of monomer chosen for adsorptidﬁeded[zs] to be linear int . Away from the critical point,

is then randomly picked according to the relative adsorptiori e local s_lc_)pe curve should _slhow strong curvature away

rates{p,}, and the time length of a step isni{t) where rom the critical point value as™"—0.

ny(t) is the total number of vacancies at that time. Thus on

average there is one attempted adsorption per lattice site per A. Critical dynamics

unit time, which makes our time scale equivalent to the

Monte Carlo stegMCS) used in conventional static simula-

tions. We always start with a lattice big enough that the

active region will never reach the boundaries; it is effec’[ivelyWere calculated from Bandependent runs of up to 4@ime

an infinite lattice. - o
. X . . steps at each parameter value. As expected, right at the criti-
During the simulations we measured the survival prob- P b b 9

. X o cal point the line is straight, indicating power law scaling,
ability .P(t)’ defln_ed as the probability that the syste_m hadand away from the critical point the lines show curvature.
not poisoned by time, the average number Of. vacancies per o exponents and the location of the critical point are
run_(nv(t)>, an(_j j[he avergge mean-square size of the aCt'Vgasily and precisely determined by taking the local slopes of
region per surviving rugR<(t) ). At a continuous phase tran-

o 4 " these data, which are shown in Fig. 6. We find a critiCal
E't'r?n ast—o these dynamical quantities obey power law pqnomer adsorption rate @f-=0.395 75(10), and that the
ehavior

critical exponents are 6=0.161), #»=0.31(1), and
z=1.255(15). These values are consistent with our expecta-
P()~t™% (ny(1))~t7, (R(t))~t2 (5) tion that this transition should be in the DP universality class,
for which the exponents aré=0.1594), »=0.3137(10),
andz=1.2660(14)[26]. We found similar exponents for the
Plots of the logarithms of these quantities versus the logaadsorbing transition at a number of other points along the
rithm of the time, such as those shown in Fig. 5, yield alines separating the reactive phase and the saturated states
straight line at the phase transition, and show curvature awajgee the discussion of the crossover from bicritical to critical
from the transition. behavior beloy; indicating the transition between the reac-

ith similar expressions fom(t) and z(t). At the critical
point, a graph of the local slope versus' should extrapo-

Figure 5 shows the data for the three dynamic quantities
near the phase transition to th& saturated phase at
pag= 0.5 plotted against time on a log-log scale. These data
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10° Lt
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.10 ——m———t———— pPc<pe showing crossover from bicritical behavior to subcritical

0.0 2.5 >0 behavior. From bottom to top, the curves corresponggte- 0.0,
10000/t 0.04, 0.08, 0.10, 0.11, and 0.122. The top curpg=£0.122) cor-

responds to the bicritical point. All other curves tend toward a slope

FIG. 7. Effective exponents using E(B) with b=>5 for the of —0.5 at larget. The timet is measured in Monte Carlo steps.

defect dynamics near the bicritical point where tie and

B-poisoned phases meet the reactive phase as defined if6)Eq. ] i . i
with b=5. The timet is measured in Monte Carlo steps. From point we also studied the dynamics of an interface between

bottom to top, the three curves in each panel correspond tthose two phases. Starting with a single vacancy between the
pc=0.121, 0.122, and 0.123, with the middle line corresponding totwo domains, we used two different methods to analyze the
the bicritical point. behavior of the interface. Since there must always be at least

one vacancy between two different saturated phases, in the
tive phase and any single saturated phase is always in the Ciftst method we ignore the survival probabil@(t) and take

universality class. 6=0. We then measure the number of vacancies in the in-
terface(n(t))=t” and average size of the interfatR?(t))
B. Bicritical defect dynamics «tZ From 5x10* independent runs at the bicritical point,

each lasting 10time steps, we found the other exponents to
be =0.285(10) andz=1.142). This type of interface dy-
namics has been used to study the properties of critical in-
terfaces in other models in the BAWE class, where similar
results fory andz were obtained18,19.

In the second type of interface dynamics simulations,
. . which has not been studied before, the simulation is stopped
up to 10 time steps we found the local slope data shown Nif the interface between the domains has “collapsed” back

Fig. 7, yielding values 0f6=0.291), #=0.001), and {5 4ne yacant site. We introduce a probability of avoiding a
z=1.150(15). These values indicate that the bicritical behav- s .
ior falls in the BAWE universality class, for which coIIapseP(t)fxt’ and corresp’ondmg vacancy concentra-
§=0.2852), 7=0.00q1), andz=1.141(2)[19]. tions (n(t))>t” and (R*(t))=t*. Figure 9 shows results
For pc<p% along theA-B coexistence line, a similar from 1'07 independent runs each lasting up to titne steps.
analysis shows a crossover from the bicritical behavior toVe find values of §'=0.732), »'=-0.432), and
subcritical behavior corresponding to the well known prob-2’ =1.12). . .
lem of the T=0 one-dimensional kinetic Ising model for  Note the value of the dynamic exponenbr z’, which
which dynamic exponent§=0.5, = —0.5, andz=1 are = Measures th_e size of the active region during surviving runs,
known exactly[27]. The two-species version of our model, 'S the same in both types of interface dynamlcs simulations
which occurs forpe=0 on the edge of the phase diagram, @S that measured for the defect.dynam!cs. Furthermore, al-
can be mapped onto this kinetic Ising model. However, aghough the exponeni@and  are different in the three cases,
can be seen in Fig. 8, for Opc<p% at short times the their sumé+ 7 (or 8’ + '), which governs the time evolu-

dynamic critical behavior tends to act more like the bicritical 07 Of the number of vacancies in just the surviving runs, are
behavior before changing to kinetic Ising model behavior af® Same within statistical error. This indicates a universal
long times. The time at which this crossover occurs increasgature of the critical spreading of the active region for mod-
aspc approache’ , but for all pc<pZ the long time dy- els with two symmetric adsorbing states which is indepen-

namical critical behavior corresponds to the kinetic Isingd.ent of whether defect or interface dynamics is .be|ng_con—
model. sidered. A similar result holds for some one-dimensional

systems with infinitely many adsorbing staf{@s].

Assuming this conjecture is true, it should be noted that
simulations using the first type of interface dynamics, where
To further analyze the importance of competition in the§=0, yield no information beyond that obtainable from
growth of two equivalent saturated phases at the bicriticatimulations employing defect dynamics. However, simula-

The same kind of analysis at the bicritical point at
pag=0.5, using an initial condition of a vacancy in an
A-saturated phase, vyields a bicritical point at
pc=pec=0.1231). Theexponents at the bicritical point are
very different, which we expect given the presence of two-
symmetry equivalent saturated phases. FroxilB runs of

C. Bicritical interface dynamics
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bicritical point before changing to the directed percolation

-0.68 Rr—————————
5 M‘\\\\‘ critical behavior at long times. The time with which the

0.73 P ] crossover occurs increases as the bicritical point is ap-
A E— proached, making studies very close to the bicritical point
078 ] too time-consuming.
036 V. SUMMARY
/ [
T 043 We have studied a simple three-species monomer-
] monomer reaction model in one dimension to investigate the
-0.50 F=——— — role of symmetry in adsorbing phase transitions. We have
1.20 ———— ] shown that, unlike the one-dimensional versions of the two

, ; species monomer-monomer model or the monomer-dimer
Z 115 W ZGB model, this model has a reactive steady state in one
i dimension. There are also poisoned states for which the lat-
110 lm———— tice is covered by one of the monomer species. The continu-
0.0 2.3 >0 ous phase transitions between the reactive phase and the poi-
100007t soned states meet at bicritical points. Along the first-order
fcoexistence line between two absorbing phases the model
reduces to the two-species monomer-monomer model.
We also constructed a mean-field theory of the model. An
unusual feature of the mean-field analysis is that the bicriti-

cal points lie on the edge of the phase diagram if the corre-

tions using the second type of interface dynamics measure 3gtions of triplets of adjacent sites are not exactly treated.
independent dynamic exponedit which we expect to be & oply when correlations up to triplets of adjacent sites are

universal number. Recent measurements on similar mode|§ciuded does the bicritical point appear inside the phase

FIG. 9. Effective exponents, as in Fig. 7, for the second type o
interface dynamics near the bicritical point where the and
B-poisoned phases meet the reactive phase.

support this conjecturg29]. diagram, indicating the importance of reproducing the corre-
o N _ lations induced by large domains of a single saturated phase.
D. Crossover from bicritical to critical behavior The dynamic critical behavior at the transition between

Finally, we measured the crossover exponent from bicriti{h€ reactive phase and a poisoned phase is in the DP univer-
cal to critical behavior. Near the bicritical point where the Sality class. At the bicritical points, where there are two
A- andB-poisoned phases meet, the boundary of the reactivduivalent poisoned states, the dynamic critical behavior is
region is expected to behave apab— 0-5)“(pc—p’é)‘/’ in the BAWE class. Thus the universality class of the tran-

where ¢ is the crossover exponef22]. We used the dy- sition changes from DP to BAWE when the symmetry of the

namical simulation method to accurately determine the loca@dSOrbing state is increased from one to two equivalent

tion of the DP phase boundary between the reactive phagéoiseless states. Furthermore, we have shown that having a

and theA-saturated phase near the bicritical point. From thetWOfOId symmetry in the adsorbing states introduces addi-

log-log plot of psg— 0.5 versuspc—p% shown in Fig. 10, tional features in the dynamics over a model with a unique

we find ¢=2.1+0.1. Our determination o is not as accu- adsorbing state. In particular, the critical dynamics of the

L L interfaces between two different adsorbing states shows a
rate as the other exponents due to complications arising from

crossover effects. Similar to the crossover from bicritical tosensmwty to how the dynamics is defined, and the survival

o . . L X Probability of fluctuations in the size of the interface from its
subcritical behavior described above, near the bicritical poin ; . .
) ) T Smallest value is described by a new universal exponent
at short times the dynamical behavior is controlled by they, " d . )
&'. However, the critical spreading of the reactive region, be
it a defect in a single phase or a domain wall between phases,
10" — appears to be insensitive to the choice of initial conditions.

F This appears to result from the fact that large reactive regions
are insensitive to whether the reactive regions are bounded
by the same or different saturated phases. We do not expect
] this result to be true in higher dimensions where the entropy
. of domain walls can play a role and nonuniversal critical

spreading has been observed in other mo&0%

10" 3

Pap- 0.3
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APPENDIX: RATE EQUATIONS

IN THE TRIPLET APPROXIMATION
FIG. 10. Location of the critical line as a function of distance

from the bicritical point. The data fall on a line with a slope corre-  The triplet approximation replaces the actual lattice con-
sponding to the crossover exponeft=2.1+0.1. figuration with the average configuration of each cluster con-
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TABLE IlI. Triplet density changes due to ah monomer ad- TABLE Ill. Nonvanishing triplet density changes due to An
sorbing, and remaining on the lattice, in the triplet approximation. monomer adsorbing, and reacting withBamonomer to form an
AB molecule, in the triplet approximation.

Event type Al
Event type A|ABT
AXyyy = PalXvvvt (2Xyyv T Xavy) Pyvvixvv]
AXana PalXavat (2XavatXavv) Paavixav] Axyyy PaXevvt PaYasPvevixev(1+ Pevvevx)
AXanv PalXavvt (2Xavat Xavv) (Pvavixav—Paavixav)] AXggs —PaYaePeevixsvPeBR/XBE
AXyay PalXvvyv— (2Xavat Xavy) Pvavixavl AXggy PaYaePeevixev(— 1+ Pegmxes— Peavixes)
AXava Pal —Xavat (2Xyyvt Xavy) Pavvixvv] Axygy —PaYas(Pvevixev— PeavixevPesvixes)
AXayy Pl = Xavvt (2Xuwvt Xavw) (Pyvvixvv = Pavvixvy) 1 AXgvg ~—PaXgve— PaYasPvevxsvPevEBYX
AXgyy = Pa(2Xyyvt+ Xavy) Pevvixvy AXayy PaXavet PaYasPvevxsvPaveisvx
AXcyy = Pa(2Xyyvt Xavy) Pcvvixvy AXgyy PalXeve—Xevvl T PaYaePeBVIXBY
AXave PA(2XvvvtXavy) Pevvixvy +PaYaePvevixev Pevesvx— Pevvievx)
AXave PA(2%Xyvvt Xavv) Pevvixvy AXcvv Pa 3 Xgvet PaYasPyvevixevPEYEBYX
AXave —PaXave— PaYaePvevxevPaveisvx
sisting of three adjacent sites. Define the average number oreve —Pa 2 Xave PaYaePvevixevPevaeyx
the different number of triplets as
Niji and similarly _forB andC type monomers. N
Xijk= _The equations of motion of the triplet densities can be
written as

whereN is the total number of triplets, which in one dimen- dxiiy

sion is equal to the number of sites, &g} is the number of d—'t' =2 A,
triplets consisting ofi, j, andk type monomersA, B, or a
C) or vacancies Y). The densities of asymmetric triplets,

i.e.,ijk type triplets withi #k, are by symmetry assumed to
be equal, and are added together.

In the adsorption-controlled limit, triplets with adjacent = . L . .
dissimilar monomers, e.gA—B—B,A—C—V, are Pair approximation. The triplet density changes dueAto
forbidden, leaving 19 allowed types of triplets. However theand ALABT events are listed in Tables Il and IIl, respec-
triplet densities must satisfy four separate constraints, whlcﬁvely' where
reduce the number of independent triplet densities to 15. The . 1
first of these constraints, similar to the constraints on the site Yae=Xgvvt XgveT Xave™ 2 Xave
and bond densities given by Ed.) and Eq.(3), respectively,
merely conserves the total triplet density

where o refers to the event type, armlxl(f,? are the triplet
density changes with an event of type The different types
of events were enumerated above in the discussion of the

andP;jx« is the conditional probability for antype mono-
mer or vacancy to occur next toj& pair. For example,

E Xijk =1. p _ Xvvv

ik VVVIXVV 1 1

Xyyvt 7 Xavvt 3 Xgyvt Xcvy
The other three constraints have no analogs in the site or pair
approximations. Because each particular lattice site contricdnd

utes to three different triplets, and the middle and end posi-

tions of the triplets are not symmetric, the total density of Pyavxay=————.
A type monomers occurring in say the left position of the Xvavt 3 Xaav
triplets must be equal to the the total densityA\afype mono- )
mers occurring in the middle position of the triplets Then takingxyyy, Xavv, Xsvy, andxcyy to be the de-
pendent triplet densities, the equations of motion of the in-
XavvT 2Xavat XaveT Xave=Xaav+ 2Xyav, dependent triplet densities are
dXaaa

at PalXavat (2Xavat Xavv) Paavixavl — (PeYeat PcYca) PaavixavPaaaxaa,

dXaav
at PalXavvT (2Xavat Xavv) (Pvavixav—Paavixav) 1+ (PeYeat PcYca) Paavixal =1+ Paanxan— Paavixan)s

dXvav
T PalXvvv— (2Xavat Xavv) Pvavixavl — (PeYeat PcYca) (Pvavixav— PaavixavPaavixaa)



dXava
dt

dXave
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=pal —Xavat (2XyyvtXavv) Pavvixvv] — (Pe+ Pc)Xava— (PeYsat PcYca) PvavixavPavaavx:

T PA(2Xyyvt Xavy) Pevvixvvt Pe(2Xvyvyvt Xgwv) Pavvixvv— PaXave— PaYasPvevixevPaveisvx— PeXave

—PeYeaPvavixavPaveiavx— PcXave— PcYcaPvavixavP aveiavx— PcYcePvevixevPavesvx:

and similarly for the remaining densities.
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