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Three-species monomer-monomer model: A mean-field analysis and Monte Carlo study

Kevin E. Bassler and Dana A. Browne
Department of Physics and Astronomy, Louisiana State University, Baton Rouge, Louisiana 70803

~Received 26 November 1996!

We study the phase diagram and critical behavior of a one-dimensional three-species monomer-monomer
catalytic surface reaction model. Static Monte Carlo simulations are used to roughly map out the phase diagram
consisting of a reactive steady state bordered by three equivalent unreactive phases where the surface is
saturated with one monomer species. The transitions from the reactive phase are all continuous, while the
transitions between poisoned phases are first order. Of particular interest are the bicritical points where the
reactive phase simultaneously meets two poisoned phases. A mean-field cluster analysis fails to predict all of
the qualitative features of the phase diagram unless correlations up to triplets of adjacent sites are included.
Scaling properties of the continuous transitions and the bicritical points are studied using dynamic Monte Carlo
simulations. The transition from the reactive to a saturated phase shows directed percolation critical behavior,
while the universal behavior at the bicritical point is in the even branching annihilating random walk class. The
crossover from bicritical to critical behavior is also studied.@S1063-651X~97!07405-9#

PACS number~s!: 05.70.Ln, 82.20.Mj, 82.65.Jv, 64.60.Ht
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I. INTRODUCTION

Nonequilibrium models with many degrees of freedo
whose dynamics violate detailed balance arise in studie
biological populations, chemical reactions such as hetero
neous catalysis, fluid turbulence, and elsewhere. The ma
scopic behavior of these models can be much richer than
of systems in thermal equilibrium, showing organized m
roscopic spatial and temporal structures like pulses or wa
and even spatiotemporal chaos. Even the steady state be
ior can be far more complicated, involving, for examp
scale invariance at generic parameter values, and critica
havior distinct from any equilibrium models. However, lik
their equilibrium cousins, systems at continuous transiti
between nonequilibrium steady states show universal be
ior that is insensitive to microscopic details and depends o
on properties such as symmetries and conservation laws

One place where such nonequilibrium models appear i
the study of chemical reactions occurring on catalytic s
faces, which show a variety of interesting behavior includ
nonequilibrium phase transitions, temporal oscillations, s
ral waves, and chemical chaos@1#. In order to help under-
stand these complicated processes, a number of simple m
els have recently been proposed that attempt to capture
essential physics@2#.

Ziff, Gulari, and Barshad~ZGB! proposed a monomer
dimer reaction model to explain some features of CO oxi
tion on a noble-metal surface@3#. In their model, monomers
representing CO molecules and dimers representing O2 mol-
ecules adsorb on a lattice. Immediately upon adsorption,
O2 dimers dissociate into two O monomers. CO monom
and O monomers occupying nearest-neighbor sites then
to form a CO2 molecule that immediately desorbs, leavin
two vacant lattice sites. In the limit of infinitely fast reaction
~the adsorption-controlled limit!, where the only paramete
of the model is the relative adsorption rate of CO molecu
yCO, they found in two dimensions that there are thr
phases: An O2, or dimer-poisoned state foryCO,y1, a CO,
or monomer-poisoned phase foryCO.y2, and a reactive
551063-651X/97/55~5!/5225~9!/$10.00
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phase fory1,yCO,y2. At y1 the fraction of each specie
changes continuously, indicating that the dimer poison
transition is continuous. Aty2 the monomer poisoning tran
sition is first order, with the densities of the different spec
changing discontinuously. In one dimension, the ZG
monomer-dimer reaction model has no reactive phase, o
monomer-poisoned and dimer-poisoned phases separate
a first-order transition@4#.

An even simpler catalytic reaction model can be co
structed by replacing the dimer species in the ZGB mo
with a second monomer species. This monomer-mono
model has a long history@5#, and in fact certain analytic
results for this model have been obtained in the reacti
controlled limit of the model@6#. In this model two different
monomer species, call themA and B, adsorb on a lattice
where nearest-neighborAB pairs react and anAB molecule
desorbs. However, the phase diagram for this model does
contain a reactive steady state in any number of dimensi
either in the adsorption-controlled or in the reactio
controlled limit. The phase diagram consists only ofA- and
B-poisoned states, and a first-order transition between th

The dimer poisoning transition in the ZGB model is o
of the most common types of continuous phase transition
nonequilibrium models. It is a transition to a single abso
ing, noiseless, steady state, the term absorbing indicating
state cannot be left once it is reached. Other examples
clude directed percolation~DP! @7,8#, the contact process@9#,
autocatalytic reaction models@10#, and branching annihilat-
ing random walks with odd numbers of offspring@11,12#.
Both renormalization group calculations@7,13# and Monte
Carlo simulations@8–12,14# show that these models form
single universality class for a purely nonequilibrium mod
with no internal symmetry in the order parameter.

Recently, a number of models with continuous adsorb
transitions in a universality class distinct from directed p
colation have been studied. These models include probab
tic cellular automata models studied by Grassbergeret al.
@15#, certain kinetic Ising models@16#, the interacting
monomer-dimer model@17,18#, and branching annihilating
5225 © 1997 The American Physical Society
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5226 55KEVIN E. BASSLER AND DANA A. BROWNE
random walks with an even number of offspring~BAWE!
@11,19#. All of these models except for the BAWE have tw
equivalent absorbing states indicating the importance
symmetry of the adsorbing state to the universality cla
However, the universal behavior of this new class is app
ently controlled by a dynamical conservation law. If the im
portant dynamical variables in this class are defects re
sented by the walkers in the BAWE model and the wa
between different saturated domains in the other models
models have a ‘‘defect parity’’ conservation law@15# where
the number of defects is conserved modulo 2. Recent fi
theoretic work confirms this viewpoint@20#.

In a recent Letter@21#, we introduced a monomer
monomer reaction model with three different monomer s
cies. This model could represent either a system with th
different chemical species or an autocatalytic reaction sys
in which one chemical species can adsorb on three diffe
types of surface sites. Using static and dynamic Monte C
simulations, we determined the phase diagram and stu
the phase transitions in the one-dimensional version of
model, and showed that it has continuous adsorbing tra
tions to both one and two equivalent noiseless states.
therefore a good model to study the role of symmetry
adsorbing phase transitions.

In this paper we expand those results, providing m
details of our simulation methods and of the results, ag
restricting our consideration to the one-dimensional vers
of the model. We also include a mean-field cluster analy
of the model including up to triplets of adjacent sites. T
paper is organized as follows. In the next section we de
the model and show the phase diagram of the model
determined by simulations. The following section prese
the mean-field analysis. Section IV contains the details
results of a detailed Monte Carlo study of the dynamic sc
ing behavior at the various phase transitions, and of
crossover behavior between the different types of scaling
havior. In the last section we summarize our results.

II. THE MODEL

Our three-species monomer-monomer model is defined
two fundamental dynamic processes:~a! monomer adsorp-
tion at sites of a substrate, and~b! the annihilation reaction o
two dissimilar monomers adsorbed on nearest-neighbor
of the substrate. Here we consider the model only in
adsorption-controlled limit where process~b! occurs instan-
taneously. Calling the monomer speciesA, B, andC, the
parameters in the model are then the relative adsorption r
of the different monomer speciespA , pB , andpC , such that
pA1pB1pC51. Using static Monte Carlo simulations to g
the rough picture, and refining it with dynamical Mon
Carlo studies described below, we find the ternary phase
gram for the model as shown in Fig. 1. In this figure, t
horizontal axis corresponds to the relative adsorption rat
A and B monomerspAB5pA /(pA1pB). The absorbing
phases, where one monomer species saturates the chai
cupy the corners of the phase diagram. In the center of
phase diagram is a a reactive steady state. There are conti
ous phase transitions from the reactive phase to the satu
phases, but the monomer densities undergo discontinu
first-order, transitions from one saturated state to anot
f
s.
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The points where the reactive phase and two saturated ph
meet arebicritical points@22# where two lines of continuous
transitions meet a line of first-order transitions.

III. MEAN-FIELD THEORY

To analyze the kinetics of the three-species monom
monomer model, it is useful to perform a mean-field ana
sis. While such analysis neglects long-range correlations
thus cannot be expected to properly predict critical prop
ties, it should properly predict the qualitative structure of t
phase diagram, including the existence of continuous tra
tions and multicritical points. The mean-field analysis a
provides a starting point for studying the importance of su
fluctuations, which, of course, become particularly importa
near continuous phase transitions. The mean-field appro
we use@23# studies the time evolution of clusters of sites, t
approximation coming in truncating the probabilities of o
serving clusters of larger size into probabilities for smal
size clusters. The simplest form is the site approximat
where probabilities of observing certain nearest-neigh
pairs is replaced by the produce of the average site dens
Better approximations can be obtained systematically by
placing the actual configuration of larger clusters, i.e., pa
then triplets, and so on, with the average density of th
clusters. The analysis presented below of the o
dimensional~1D! version of the model includes clusters co
sisting of up to triplets of adjacent sites.

A. Site approximation

At a particular time, a lattice withN sites will haveNV
vacancies, the remaining sites being filled withNA , NB , and
NC numbers ofA, B, andC monomers, respectively. Th
density ofA monomers isxA[(NA /N), with corresponding
definitions forB, C, and vacant (V) sites. We have the ob
vious constraint

xV1xA1xB1xC[1. ~1!

In the site approximation all correlations are neglected,

FIG. 1. Phase diagram showing three saturated phases~indicated
by the letters!, and a reactive phase~the unlabeled center region!.
Solid lines indicate continuous transitions. Dashed lines indic
first-order transitions. Bicritical points~filled circles! occur where
two critical lines meet a first-order line.
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55 5227THREE-SPECIES MONOMER-MONOMER MODEL:A . . .
that xV
2 is the probability that a given pair of lattice sites a

occupied by two vacancies. The rate equations for theA
monomer density is

dxA
dt

5pAxV~12xB2xC!22~pB1pC!xV@12~12xA!2#,

~2!

with similar equations forxB andxC . The first term on the
right hand side of Eq.~2! is the rate ofA monomer adsorp-
tion multiplied by the probability that an adsorbingA mono-
mer will find a vacant site that has noB or C monomers
adsorbed on adjacent sites. The second term is the ra
which B or C monomers find a vacant site with at least o
adjacent adsorbedA monomer to react with.

Equations~2! have steady state solutions corresponding
each of the three adsorbing states where the surface is
soned by one species, as well as one corresponding to
reactive steady state. To find the site approximation ph
diagram, we analyzed the stability of those solutions a
function of the rates$pa% by examining the eigenvalues o
the Jacobian matrix for linearized rate equations.

For example, the Jacobian matrix for theA-poisoned state
has two zero eigenvalues and one eigenvalue
pB1pC2pA5(122pA). This third eigenvalue shows tha
theA-poisoned state is stable only forpA.1/2. Correspond-
ing results hold for the other poisoned states, leading to
site approximation phase diagram shown in Fig. 2.

As the phase boundaries are approached from the rea
phase, the monomer densities vanish continuously, indi
ing a continuous transition to an absorbing state. The po
on the edge of the phase diagram where two different p
soned phases meet the reactive phase are bicritical poin

B. Pair approximation

We improve the site approximation by properly accou
ing for the correlation of nearest-neighbor pairs and appro
mating the correlations of triples and larger clusters. We
fineNi j as the number of bonds connecting nearest-neigh
sites occupied byi and j monomers (A, B, C, or V), where

FIG. 2. Phase diagram in the site approximation. Transiti
between the reactive phase~unlabeled! and the three saturate
phases~indicated by the letters! are continuous. Note that unlike th
actual phase diagram shown in Fig. 1 the continuous transition l
are straight and the bicritical points where two continuous transi
lines meet are on the edge of the phase diagram.
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the monomeri occupies the site to the left of monomerj ,
and we haveNi j5Nji . Since we are studying one dimen
sion, the number of bonds equals the number of sitesN, so
the bond densities are defined by

xi j[
Ni j1Nji

N
, iÞ j

and

xii[
Nii

N
.

There are seven different allowed types of bonds:VuV,
AuA, BuB, CuC, AuV, BuV, andCuV. Other types
of bonds,AuB, AuC, and BuC, are forbidden in the
adsorption-controlled limit we are considering. The densit
satisfy the constraint

xVV1xAA1xBB1xCC1xAV1xBV1xCV51, ~3!

so only six of thexi j are independent. TheA monomer den-
sity is given byxA5xAA1 1

2xAV , with similar expressions
for theB andC densities.

To determine the equations of motion of the pair densit
it is useful to distinguish between the different types
events that change the configuration. For example, if anA
monomer attempts to occupy a site, it can~1! stick, ~2! react
with a B, or ~3! react with aC, which we indicate, respec
tively, with the shorthand~1! A↓, ~2! A↓AB↑, and ~3!
A↓AC↑. The rate equations can be written as

dxi j
dt

5(
a

Dxi j
~a! ,

wherea refers to the event type, andDxi j
(a) is the change in

i j bond density arising from an event of typea.
To find the different bond density changes note that

probabilityP( i u j ) for a site to be occupied by a monomer~or
vacancy! of type i , given that one of its nearest-neighbors
of type j , is

P~ i u j !5
Ni j

Ni
5

xi j
2xj

for iÞ j , and

P~ i u i !5
xii
xi
.

The variousDxi j
(a) are given in Table I, where

ziV5P~ i uV!1P~VuV!5
xVV1 1

2 xiV
xV

is the probability that the site to the left of a vacant site
occupied by either ani type monomer or aV. The density
changes due to the other event types are found by perm
tion.

Thus the rate equations are

s

es
n
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5228 55KEVIN E. BASSLER AND DANA A. BROWNE
dxAA
dt

5pAxAVzAV2
xAAxAV
2xA

@pB~11zBV!1pC~11zCV!#,

dxAV
dt

5pAzAV~2xVV2xAV!

2
xAV
2

2xA
@pB~11zBV!1pC~11zCV!#. ~4!

The other equations can be found by permutation, exc
for xVV which can be found using Eq.~3!.

Multiple steady state solutions to the set of six coup
bond density rate Eqs.~4! correspond to the reactive sta
~which can be found numerically!, as well the three poisone
states. In principle, to find the phase diagram a stab
analysis of those steady state solutions could be perform
However, we instead simply solved the six equations
merically as a function of the parameterspAB andpC , and
looked for the transitions to the poisoned states. The res
are shown in Fig. 3. The densities of the different monom
species still change continuously as the phase boundarie
approached, indicating that the transitions are continuo
While the phase boundaries are now curved as they are in
actual phase diagram, the bicritical points are still on
edge of the phase diagram, unlike the actual phase diag

TABLE I. Bond density changes for different events in the p
approximation.

Event type A↓ A↓AB↑

DxVV 22pAzAVxVV
1
2 pAxBV~11zAV!F11

xBV
2xB

G
DxAA pAzAVxAV 0

DxBB 0 2
1
2 pAxBV(11zAV)

xBB
xB

DxCC 0 0
DxAV pAzAV(2xVV2xAV) 0

DxBV 0 2
1
2 pAxBV(11zAV)

xBV
xB

DxCV 0 0

FIG. 3. Phase diagram in the pair approximation. Transitio
between the reactive phase~unlabeled! and the three saturate
phases~indicated by the letters! are continuous. Note that unlike th
actual phase diagram shown in Fig. 1 the bicritical points are
on the edge of the phase diagram.
pt
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C. Triplet approximation

The mean-field theory can be refined even further by c
sidering larger clusters. However, this systematic proc
rapidly increases in difficulty. But since even the pair a
proximation failed to predict that the bicritical points occ
on the interior of the phase diagram, we pushed the clu
expansion one step further and analyzed the model in
triplet approximation. In this approximation clusters of thr
adjacent sites are considered, thereby including the effec
correlations up to that level. The details of the calculation
presented in the Appendix, but here we summarize the
sults. In one dimension, there are 19 different allowed tr
lets. However, four different constraints reduce the num
of independent triplets to 15. Numerically solving the ra
equations for the densities of those 15 different triplets
multaneously, we find solutions corresponding to the re
tive steady state, as well as the poisoned states. The p
diagram, calculated as for pair approximation, is shown
Fig. 4. Finally at this level of approximation all of the qual
tative features of the actual phase diagram are predicted
particular, the bicritical points appear on the interior of t
phase diagram and there are first-order lines between
poisoned phases. However, note that the size of the poiso
phases is still underestimated by the mean-field clu
analysis, even in the triplet approximation. For example,
bicritical point on the pAB50.5 line occurs at abou
pC50.02 in the triplet approximation, whereas in actuality
occurs at aboutpC50.12. This indicates that fluctuations
which are still not fully accounted for in mean-field theor
stabilize the poisoned phases.

IV. SIMULATIONS

To further investigate the three-species monom
monomer model we also used time-dependent Monte C
simulations. Particularly useful for studying critical prope
ties, the method is a form of ‘‘epidemic’’ analysis@12,19,24#
in which the average time evolution of a particular config
ration that is very close to an adsorbing state~defect dynam-

s

ll

FIG. 4. Phase diagram in the triple approximation. Transitio
between the reactive phase and the three saturated phases ar
tinuous, while transitions between saturated phases are first o
Inset shows a closeup of the phase diagram near the bicritical p
at the end of the first-order line separating theA andB saturated
phases. All of the qualitative features of the actual phase diag
are reproduced in this approximation.
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55 5229THREE-SPECIES MONOMER-MONOMER MODEL:A . . .
ics!, or very close to a minimal width interface between tw
different adsorbing states~interface dynamics!, is measured
by simulating a large number of independent realizatio
Using this technique we determined the universality clas
of the critical and bicritical points, and studied the critic
dynamics of interfaces between the two symmetric satura
states at the bicritical points, and the crossover from bic
cal to critical behavior, including measuring the crosso
exponentf, as well as the subcritical behavior at the firs
order lines.

Because monomers can adsorb only at vacant sites,
the total number of vacancies on the lattice is usually v
small, instead of randomly picking a site to attempt to ads
on, it is much more efficient to use a variable time algorith
in which the adsorption site is randomly picked from a list
vacant sites. The species of monomer chosen for adsorp
is then randomly picked according to the relative adsorpt
rates$pa%, and the time length of a step is 1/nV(t) where
nV(t) is the total number of vacancies at that time. Thus
average there is one attempted adsorption per lattice site
unit time, which makes our time scale equivalent to t
Monte Carlo step~MCS! used in conventional static simula
tions. We always start with a lattice big enough that t
active region will never reach the boundaries; it is effectiv
an infinite lattice.

During the simulations we measured the survival pro
ability P(t), defined as the probability that the system h
not poisoned by timet, the average number of vacancies p
run ^nV(t)&, and the average mean-square size of the ac
region per surviving run̂R2(t)&. At a continuous phase tran
sition as t→` these dynamical quantities obey power la
behavior

P~ t !;t2d, ^nV~ t !&;th, ^R2~ t !&;tz. ~5!

Plots of the logarithms of these quantities versus the lo
rithm of the time, such as those shown in Fig. 5, yield
straight line at the phase transition, and show curvature a
from the transition.

FIG. 5. Log-log plot showing the average number of vacanc
nV as a function of time~measured in MCS! near the transition from
the reactive phase to theC saturated phase atpAB50.5. From top to
bottom, the three curves correspond topC50.395, 0.395 75, and
0.3965. The middle curve corresponds to the critical point. N
that the critical line is straight while the other lines have curvatu
s.
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Precise estimates of the location of the critical point a
of the exponents can be made by examining the local slo
of the curves on a log-log plot. The effective expone
d(t) is defined as

2d~ t !5$ ln@P~ t !/P~ t/b!#/ lnb%, ~6!

with similar expressions forh(t) and z(t). At the critical
point, a graph of the local slope versust21 should extrapo-
late to the critical exponent, with a correction that is e
pected@25# to be linear int21. Away from the critical point,
the local slope curve should show strong curvature aw
from the critical point value ast21→0.

A. Critical dynamics

Figure 5 shows the data for the three dynamic quanti
near the phase transition to theC saturated phase a
pAB50.5 plotted against time on a log-log scale. These d
were calculated from 105 independent runs of up to 104 time
steps at each parameter value. As expected, right at the
cal point the line is straight, indicating power law scalin
and away from the critical point the lines show curvature

The exponents and the location of the critical point a
easily and precisely determined by taking the local slopes
these data, which are shown in Fig. 6. We find a criticalC
monomer adsorption rate ofp̃C50.395 75(10), and that the
critical exponents are d50.16(1), h50.31(1), and
z51.255(15). These values are consistent with our expe
tion that this transition should be in the DP universality cla
for which the exponents ared50.1596(4), h50.3137(10),
andz51.2660(14)@26#. We found similar exponents for th
adsorbing transition at a number of other points along
lines separating the reactive phase and the saturated s
~see the discussion of the crossover from bicritical to criti
behavior below!, indicating the transition between the rea

,

e
. FIG. 6. Effective exponents using Eq.~6! with b55 for the
defect dynamics near the critical point atpAB50.5 on the line
where theC-poisoned phase meets the reactive phase. The timet is
measured in Monte Carlo steps. From top to bottom, the th
curves in each panel correspond topC50.3955, 0.395 75, and
0.3960, with the middle curve corresponding to the critical poin
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5230 55KEVIN E. BASSLER AND DANA A. BROWNE
tive phase and any single saturated phase is always in th
universality class.

B. Bicritical defect dynamics

The same kind of analysis at the bicritical point
pAB50.5, using an initial condition of a vacancy in a
A-saturated phase, yields a bicritical point
pC5pC*50.122(1). Theexponents at the bicritical point ar
very different, which we expect given the presence of tw
symmetry equivalent saturated phases. From 53105 runs of
up to 105 time steps we found the local slope data shown
Fig. 7, yielding values ofd50.29(1), h50.00(1), and
z51.150(15). These values indicate that the bicritical beh
ior falls in the BAWE universality class, for which
d50.285(2), h50.000(1), andz51.141(2) @19#.

For pC,pC* along theA-B coexistence line, a simila
analysis shows a crossover from the bicritical behavior
subcritical behavior corresponding to the well known pro
lem of the T50 one-dimensional kinetic Ising model fo
which dynamic exponentsd50.5, h520.5, andz51 are
known exactly@27#. The two-species version of our mode
which occurs forpC50 on the edge of the phase diagra
can be mapped onto this kinetic Ising model. However,
can be seen in Fig. 8, for 0,pC,pC* at short times the
dynamic critical behavior tends to act more like the bicritic
behavior before changing to kinetic Ising model behavior
long times. The time at which this crossover occurs increa
aspC approachespC* , but for all pC,pC* the long time dy-
namical critical behavior corresponds to the kinetic Isi
model.

C. Bicritical interface dynamics

To further analyze the importance of competition in t
growth of two equivalent saturated phases at the bicrit

FIG. 7. Effective exponents using Eq.~6! with b55 for the
defect dynamics near the bicritical point where theA- and
B-poisoned phases meet the reactive phase as defined in Eq~6!
with b55. The time t is measured in Monte Carlo steps. Fro
bottom to top, the three curves in each panel correspond
pC50.121, 0.122, and 0.123, with the middle line corresponding
the bicritical point.
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point we also studied the dynamics of an interface betw
those two phases. Starting with a single vacancy between
two domains, we used two different methods to analyze
behavior of the interface. Since there must always be at l
one vacancy between two different saturated phases, in
first method we ignore the survival probabilityP(t) and take
d[0. We then measure the number of vacancies in the
terface^n(t)&}th and average size of the interface^R2(t)&
}tz. From 53104 independent runs at the bicritical poin
each lasting 105 time steps, we found the other exponents
beh50.285(10) andz51.14(2). This type of interface dy-
namics has been used to study the properties of critical
terfaces in other models in the BAWE class, where sim
results forh andz were obtained@18,19#.

In the second type of interface dynamics simulatio
which has not been studied before, the simulation is stop
if the interface between the domains has ‘‘collapsed’’ ba
to one vacant site. We introduce a probability of avoiding
collapseP(t)}t2d8 and corresponding vacancy concentr
tions ^n(t)&}th8 and ^R2(t)&}tz8. Figure 9 shows results
from 107 independent runs each lasting up to 105 time steps.
We find values of d850.73(2), h8520.43(2), and
z851.15(2).

Note the value of the dynamic exponentz or z8, which
measures the size of the active region during surviving ru
is the same in both types of interface dynamics simulati
as that measured for the defect dynamics. Furthermore
though the exponentsd andh are different in the three case
their sumd1h ~or d81h8), which governs the time evolu
tion of the number of vacancies in just the surviving runs,
the same within statistical error. This indicates a univer
nature of the critical spreading of the active region for mo
els with two symmetric adsorbing states which is indep
dent of whether defect or interface dynamics is being c
sidered. A similar result holds for some one-dimensio
systems with infinitely many adsorbing states@28#.

Assuming this conjecture is true, it should be noted t
simulations using the first type of interface dynamics, wh
d[0, yield no information beyond that obtainable fro
simulations employing defect dynamics. However, simu

to
o

FIG. 8. Average number of vacancies forpAB50.5, and
pC<pC* showing crossover from bicritical behavior to subcritic
behavior. From bottom to top, the curves correspond topC50.0,
0.04, 0.08, 0.10, 0.11, and 0.122. The top curve (pC50.122) cor-
responds to the bicritical point. All other curves tend toward a slo
of 20.5 at larget. The timet is measured in Monte Carlo steps.
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tions using the second type of interface dynamics measur
independent dynamic exponentd8 which we expect to be a
universal number. Recent measurements on similar mo
support this conjecture@29#.

D. Crossover from bicritical to critical behavior

Finally, we measured the crossover exponent from bic
cal to critical behavior. Near the bicritical point where th
A- andB-poisoned phases meet, the boundary of the reac
region is expected to behave as (pAB20.5)}(pC2pC* )

f,
wheref is the crossover exponent@22#. We used the dy-
namical simulation method to accurately determine the lo
tion of the DP phase boundary between the reactive ph
and theA-saturated phase near the bicritical point. From
log-log plot of pAB20.5 versuspC2pC* shown in Fig. 10,
we findf52.160.1. Our determination off is not as accu-
rate as the other exponents due to complications arising f
crossover effects. Similar to the crossover from bicritical
subcritical behavior described above, near the bicritical po
at short times the dynamical behavior is controlled by

FIG. 9. Effective exponents, as in Fig. 7, for the second type
interface dynamics near the bicritical point where theA- and
B-poisoned phases meet the reactive phase.

FIG. 10. Location of the critical line as a function of distan
from the bicritical point. The data fall on a line with a slope corr
sponding to the crossover exponentf52.160.1.
an

ls

i-

ve

-
se
e

m

t
e

bicritical point before changing to the directed percolati
critical behavior at long times. The time with which th
crossover occurs increases as the bicritical point is
proached, making studies very close to the bicritical po
too time-consuming.

V. SUMMARY

We have studied a simple three-species monom
monomer reaction model in one dimension to investigate
role of symmetry in adsorbing phase transitions. We ha
shown that, unlike the one-dimensional versions of the t
species monomer-monomer model or the monomer-di
ZGB model, this model has a reactive steady state in
dimension. There are also poisoned states for which the
tice is covered by one of the monomer species. The cont
ous phase transitions between the reactive phase and the
soned states meet at bicritical points. Along the first-or
coexistence line between two absorbing phases the m
reduces to the two-species monomer-monomer model.

We also constructed a mean-field theory of the model.
unusual feature of the mean-field analysis is that the bic
cal points lie on the edge of the phase diagram if the co
lations of triplets of adjacent sites are not exactly treat
Only when correlations up to triplets of adjacent sites
included does the bicritical point appear inside the ph
diagram, indicating the importance of reproducing the cor
lations induced by large domains of a single saturated ph

The dynamic critical behavior at the transition betwe
the reactive phase and a poisoned phase is in the DP un
sality class. At the bicritical points, where there are tw
equivalent poisoned states, the dynamic critical behavio
in the BAWE class. Thus the universality class of the tra
sition changes from DP to BAWE when the symmetry of t
adsorbing state is increased from one to two equiva
noiseless states. Furthermore, we have shown that havi
twofold symmetry in the adsorbing states introduces ad
tional features in the dynamics over a model with a uniq
adsorbing state. In particular, the critical dynamics of t
interfaces between two different adsorbing states show
sensitivity to how the dynamics is defined, and the survi
probability of fluctuations in the size of the interface from
smallest value is described by a new universal expon
d8. However, the critical spreading of the reactive region,
it a defect in a single phase or a domain wall between pha
appears to be insensitive to the choice of initial conditio
This appears to result from the fact that large reactive regi
are insensitive to whether the reactive regions are boun
by the same or different saturated phases. We do not ex
this result to be true in higher dimensions where the entr
of domain walls can play a role and nonuniversal critic
spreading has been observed in other models@30#.
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APPENDIX: RATE EQUATIONS
IN THE TRIPLET APPROXIMATION

The triplet approximation replaces the actual lattice co
figuration with the average configuration of each cluster c
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sisting of three adjacent sites. Define the average numbe
the different number of triplets as

xi jk[
Ni jk

N
,

whereN is the total number of triplets, which in one dime
sion is equal to the number of sites, andNi jk is the number of
triplets consisting ofi , j , and k type monomers (A, B, or
C) or vacancies (V). The densities of asymmetric triplet
i.e., i jk type triplets withiÞk, are by symmetry assumed t
be equal, and are added together.

In the adsorption-controlled limit, triplets with adjace
dissimilar monomers, e.g.,AuBuB,AuCuV, . . . , are
forbidden, leaving 19 allowed types of triplets. However, t
triplet densities must satisfy four separate constraints, wh
reduce the number of independent triplet densities to 15.
first of these constraints, similar to the constraints on the
and bond densities given by Eq.~1! and Eq.~3!, respectively,
merely conserves the total triplet density

(
i jk

xi jk51.

The other three constraints have no analogs in the site or
approximations. Because each particular lattice site con
utes to three different triplets, and the middle and end p
tions of the triplets are not symmetric, the total density
A type monomers occurring in say the left position of t
triplets must be equal to the the total density ofA type mono-
mers occurring in the middle position of the triplets

xAVV12xAVA1xAVB1xAVC5xAAV12xVAV ,

TABLE II. Triplet density changes due to anA monomer ad-
sorbing, and remaining on the lattice, in the triplet approximatio

Event type A↓

DxVVV 2pA@xVVV1(2xVVV1xAVV)PVVV/XVV#

DxAAA pA@xAVA1(2xAVA1xAVV)PAAV/XAV#

DxAAV pA@xAVV1(2xAVA1xAVV)(PVAV/XAV2PAAV/XAV)#
DxVAV pA@xVVV2(2xAVA1xAVV)PVAV/XAV#

DxAVA pA@2xAVA1(2xVVV1xAVV)PAVV/XVV#

DxAVV pA@2xAVV1(2xVVV1xAVV)(PVVV/XVV2PAVV/XVV)#
DxBVV 2pA(2xVVV1xAVV)PBVV/XVV

DxCVV 2pA(2xVVV1xAVV)PCVV/XVV

DxAVB pA(2xVVV1xAVV)PBVV/XVV

DxAVC pA(2xVVV1xAVV)PCVV/XVV
of

h
e
te

air
b-
i-
f

and similarly forB andC type monomers.
The equations of motion of the triplet densities can

written as

dxi jk
dt

5(
a

Dxi jk
~a! ,

wherea refers to the event type, andDxi jk
(a) are the triplet

density changes with an event of typea. The different types
of events were enumerated above in the discussion of
pair approximation. The triplet density changes due toA↓
and A↓AB↑ events are listed in Tables II and III, respe
tively, where

yAB[xBVV1xBVB1xAVB1
1
2 xBVC

andPi jk /X jk is the conditional probability for ani type mono-
mer or vacancy to occur next to ajk pair. For example,

PVVV/XVV5
xVVV

xVVV1
1
2 xAVV1

1
2 xBVV1 xCVV

and

PVAV/XAV5
xVAV

xVAV1
1
2 xAAV

.

Then takingxVVV , xAVV , xBVV , andxCVV to be the de-
pendent triplet densities, the equations of motion of the
dependent triplet densities are

.
TABLE III. Nonvanishing triplet density changes due to anA

monomer adsorbing, and reacting with aB monomer to form an
AB molecule, in the triplet approximation.

Event type A↓AB↑

DxVVV pAxBVV1pAyABPVBV/XBV(11PBVV/BVX)
DxBBB 2pAyABPBBV/XBVPBBB/XBB

DxBBV pAyABPBBV/XBV(211PBBB/XBB2PBBV/XBB)
DxVBV 2pAyAB(PVBV/XBV2PBBV/XBVPBBV/XBB)
DxBVB 2pAxBVB2pAyABPVBV/XBVPBVB/BVX

DxAVV pAxAVB1pAyABPVBV/XBVPAVB/BVX

DxBVV pA@xBVB2xBVV#1pAyABPBBV/XBV

1pAyABPVBV/XBV(PBVB/BVX2PBVV/BVX)
DxCVV pA

1
2 xBVC1pAyABPVBV/XBVPBVC/BVX

DxAVB 2pAxAVB2pAyABPVBV/XBVPAVB/BVX

DxBVC 2pA
1
2 xBVC2pAyABPVBV/XBVPBVC/BVX
dxAAA
dt

5pA@xAVA1~2xAVA1xAVV!PAAV/XAV#2~pByBA1pCyCA!PAAV/XAVPAAA/XAA ,

dxAAV
dt

5pA@xAVV1~2xAVA1xAVV!~PVAV/XAV2PAAV/XAV!#1~pByBA1pCyCA!PAAV/XAV~211PAAA/XAA2PAAV/XAA!,

dxVAV
dt

5pA@xVVV2~2xAVA1xAVV!PVAV/XAV#2~pByBA1pCyCA!~PVAV/XAV2PAAV/XAVPAAV/XAA!,
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dxAVA
dt

5pA@2xAVA1~2xVVV1xAVV!PAVV/XVV#2~pB1pC!xAVA2~pByBA1pCyCA!PVAV/XAVPAVA/AVX ,

dxAVB
dt

5pA~2xVVV1xAVV!PBVV/XVV1pB~2xVVV1xBVV!PAVV/XVV2pAxAVB2pAyABPVBV/XBVPAVB/BVX2pBxAVB

2pByBAPVAV/XAVPAVB/AVX2pCxAVB2pCyCAPVAV/XAVPAVB/AVX2pCyCBPVBV/XBVPAVB/BVX ,

and similarly for the remaining densities.
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